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1 Welcome/Introduction

• Jason Davis - E-mail: jasonsd@umich.edu - Office: Haven Hall 7730 - Telephone: (write in class)

• Friday class schedule will be different: will meet for three hours in the afternoon, of which the first
hour will be lecture and the last two will be the final test.

• Second half is more oriented towards preparing you for 599/the statistics sequence generally, but you’ll
find that much of the content is applicable to both statistical methods and formal theory.

• Donuts are Dimo’s Deli and Donuts! Best donuts in Ann Arbor.

2 Basic building blocks

2.1 Logic

• Will sometimes use logical notation. I.E. A→ B, A→ ¬B, A↔ B. I don’t intend to spend too much
time on logic in this course, but it’s useful for exposition.

• A→ B. What if we have ¬B? What does this imply about A?

• What if we have B? Do we know anything about A? Fallacy of affirming the consequent.

• AND: both elements must be true, represented ∧. OR: on element must be true, represented ∨.

• Say we have A ∨B. We have A. What do we know about B?

• Say we have ¬B. What do we know about the statement A ∧B?

• Proofs are based on using a series of logic statements to show that some B is implies by A. Formal
models are thus just this: series of logical statements.

• Conditionals versus biconditions.

• Review of some laws:

– DeMorgan’s Laws: ¬(P ∧Q)↔ ¬P ∨ ¬Q and ¬(P ∨Q)↔ ¬P ∧ ¬Q
– Distributive P ∨ (Q ∧R)↔ (P ∨Q) ∧ (P ∨R)

– ¬¬P ↔ P

• Example: Simplify P ∨ (Q ∧ ¬P )

• Composite statements. e.g. A→ (B → C)

• Quantifiers. ∀x, P (x) or ∃x, s.t. P (x)

• May need to convert natural language statement into formal logical structure.

• Everyone in the class thinks Jason is great: ∀x ∈ C,P (x) where P (x) represents “Jason is great”

• Equivalent formulation: @x ∈ C s.t.¬P (X)

3



3 Introduction to Set Theory, Probability, and Statistics

• Sample space is the set of all possible outcomes. Denote this S.

• An “event” is some subset of outcomes. Denote this A ⊆ S

• What is the sample space of rolling a die? How about rolling two dice? Write the ordered pairs
S = {(1, 1), (1, 2), ..., (6, 6)}.

• Say we wanted to define the event of rolling a six. What subset A ⊆ S represents this event?

3.1 Algebra of Sets: Intersections and Unions

• Definition: The complement of a set A (denoted Ac) is the set of all elements of S that do not belong
to A.

• In terms of events, this is when event A did not happen. Return to one die - what is the complement
of rolling a six?

• Definition: The intersection of A and B, denoted A ∩B, is the set of all elements that belong to both
A and B.

• Definition: The union of A and B, denoted A∪B, is the set of all elements that belong to either A or
B.

• Return to two dice. Let A be the event that the two dice add to 5. Let B be the event that both die
are even numbers. What is A ∪B? What is A ∩B?

• Disjoint/mutually exclusive iff A ∩B = ∅

• Unions of multiple sets
⋃n
i=1Ai, intersections of multiple sets

⋂n
i=1Ai.

• Similar to summation notation (
∑4
i=1 x = x+ x+ x+ x. Can generalize using i index.) and product

operator (Π4
i=1x = x4).

• Examples with dice.

• Countable versus uncountable sample spaces? To be continued!

3.2 Introduction to Probability

• Look to define a probability function that assigns probabilities to events.

• Axiom 1: Let A be any event defined over S. Then P (A) ≥ 0.

• Axiom 2: P (S) = 1

• Axiom 3: Let A and B be any two mutually exclusive events defined over S. Then P (A ∪ B) =
P (A) + P (B).

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• P (A ∩B) = P (A) + P (B)− P (A ∪B)

• What does it mean to say that two variables are independent?

• Answer: P (A ∩B) = P (A)P (B)
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• If they are not independent, then the probability of one depends on whether the other occurs or not.
Simplest example involves mutually exclusive events, e.g. P (B|A) = 0.

• People sometimes confuse mutual exclusivity and independence, when in fact they couldn’t be more
different (they are themselves mutually exclusive).

• Bayes Rule used to find conditional probabilities.

3.3 Conditional probability

• Conditional probability is the probability of some event A given that some other event B has already
occurred.

• This has the effect of shrinking the sample space.

• Consider a simple example with two die. What’s the unconditional probability of rolling a twelve?
What is the conditional probability of rolling a twelve, given that your first roll returned a six?

• Written as P (A|B) = P (A∩B)
P (B)

• This can also be written P (A|B) = P (A∩B)
P (B∩A)+P (B∩AC)

• Conditional probability can sometimes be counterintuitive. Consider the Monty Hall problem (from
the show Let’s Make a Deal).

• Prize is behind randomly selected door of three doors. Monty Hall (who, incidentally, was born in
Winnipeg, Manitoba, Canada) would then open one of the other doors to show that there was no prize
behind it. The contestant would then be offered the opportunity to switch doors.

• Consider an example case where you choose Door 2. At the point of choosing, you have a one-third
chance of it being the correct door, and each other door has a one-third chance

• Then Monty (that knave) opens a door. Say it’s door 3 (opening door 1 would produce a symmetric
problem), and note that Monty randomizes opening doors, with the exception that Monty never opens
the door with the prize, and never opens the door you picked. Should you switch doors (i.e. switch to
choose door 1)?

• Phrased differently, what’s the probability it’s behind each door?

• Probability it’s behind door 1 is now 2/3! So yes you should switch. We’ll find out why in a second.

• Use Bayes’ Theorem for calculating conditional probabilities.

• P (A|B) = P (B|A)P (A)
P (B) = P (B|A)P (A)

P (B|A)P (A)+P (B|¬A)P (¬A) =
P (B|Aj)P (Aj)

ΣiP (B|Ai)P (Ai)

• Law of total probability: P (A) = ΣiP (A|Bi)P (Bi)

• Practice example: Say that 1% of the population has cancer. Now say you have a test for cancer that
correctly states you have cancer 99% of the time if you have cancer, but returns a false positive 1%
of the time even if you don’t. You take the test and it says you have cancer. What is the probability
that you have cancer?

• P (cancer|+) = P (+|cancer)P (cancer)
P (+|cancer)P (cancer)+P (+|¬cancer)P (¬cancer) = (1)(0.01)

(1)(0.01)+(0.01)(0.99) = 0.5

• Intuition: Say you randomly selection 100 people from the population. On average, approximately one
will have cancer and test positive, and one will not have cancer and test positive. So if you are tested
positive, you have a 50/50 chance of being either.
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• So back to Monty Hall problem. What we want to compare is Pr(behind door 1|opened door 3) and
Pr(behind door 2|opened door 3).

• Pr(BD1|OD3) = Pr(OD3|BD1)Pr(BD1)
Pr(OD3|BD1)Pr(BD1)+Pr(OD3|BD2)Pr(BD2)+Pr(OD3|BD3)Pr(BD3)

= (1)(1/3)
(1)(1/3)+(0.5)(1/3)+(0)(1/3) = 2/6

2/6+1/6+0 = 2
3 .

• Pr(BD2|OD3) = Pr(OD3|BD2)Pr(BD2)
Pr(OD3|BD2)Pr(BD2)+Pr(OD3|BD1)Pr(BD1)+Pr(OD3|BD3)Pr(BD3)

= (0.5)(1/3)
3/6 = 1

3

• Intuition here: There was initially a one third probability it’s behind the door you picked, and 2/3
probability it’s behind a door you didn’t pick. When Monty picks a door, if it’s behind the door you
picked then Monty can randomize, but if it’s behind a door that you didn’t pick, Monty has to pick
the door which doesn’t have it. So that 2/3 probability weight gets transferred to the one remaining
door.

• Independence: P (A|B) = P (B).

3.4 Combinatorics

• Combinatorics, radically simplified, is a branch of mathematics that looks at groups of elements from
finite sets.

• In general, we use combinatorics to determine how many different ways elements can be combined.

• This ends up being super useful in probability theory, and in social sciences generally.

• Factorials: e.g. 5!. Compute by 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1. This gives you how many different ways you can
organize five elements in groups of five where order matters. General form of n!.

• Weird case: 0! = 1? There’s a math reason for this I don’t remember. Maybe Jean knows?

• How to compute factorials when you’re dividing them. 8!
4! = 8 ∗ 7 ∗ 6 ∗ 5. Lots of stuff cancels out.

• Order might matter in, for instance, cases where you are rearranging letters. Example: arrange
{A,B,C,D,E}.

• Permutations: P (n, k) = n!
(n−k)! . This allows you to compute how many different ways you can arrange

n elements in groups of k where order matters.

• Note that n! from above is a special case: if you arrange n elements in groups of n you get n!
(n−n)! =

n!
0! = n!

• Why is this (weakly) smaller than when you arrange all the elements? Consider that if you have
five elements, {B,A,R,D,E}. If you are arranging in groups of three elements, and example of a
permutation would be BAR. But for every such permutation, you would be able to generate more
groups if you were combining more elements: with all five, you could create {BAR−DE,BAR−ED}.
So the permutations formula “divides out” some of the groups.

• Permutations can be useful for probability: if we randomly select three letters (in sequence) from a
bag containing all five of the letters above, what’s the probability we get the word “bar”?

• Ans: There is one combination of three letters that gets us to B −A−R, and 5!
(5−3)! = 5!

2! = 5 ∗ 4 ∗ 3!.

So if we assume that it’s equally likely that we draw any letter, we get a probability of 1
5∗4∗3 = 1

60 for
drawing the word “BAR”.
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• Combinations: C(n, k) =
(
n
k

)
= n!

(n−k)!k! . This is similar to the permutations formula, but is a case

where order does not matter.

• Why might order not matter? Lots of cases where it doesn’t. Imagine there are 5 different donuts
of different types, and you want to figure out how many different combinations of donuts you could
choose, given that you can only eat three (though if they’re Dimo’s donuts, you should really work
harder to increase k...).

• In this case, it doesn’t matter if you draw the chocolate one before the sprinkles one. You still have
one chocolate donut and one sprinkles donut.

• Example with probability: Imagine donuts are {Chocolate, P lain, Sprinkles, V anilla, Jelly, Powdered,Glazed}.
If you select two donuts, what is the probability you get the powdered and glazed donuts?

• Ans: One combination (Powdered, Glazed) divided by all possible combinations of two ( 7!
5!2! = 7∗6

2 =
21). Gives us 1

21 .

• Bonus question: What’s the probability, given that you pick three donuts, that one of them is chocolate?

• Ans: This is trickier, but actually pretty intuitive. The denominator is just any combination of
three (i.e. 7!

4!3! = 7∗6∗5
3∗2 = 35). The numerator is all combinations of three elements that include a

chocolate donut. So since order doesn’t matter, let’s just take the chocolate one out, and think of
how many different ways we can choose the two remaining donuts from the remaining elements. So
6!

4!2! = 6∗5
2 = 15. So our probability of getting a chocolate donut is 15

35 = 3
7 .

• Side bar on functions and sets: The combinations formula is a two-variable function. As such, it maps
elements from one set to elements of another set. What are the domain and co-domain of this function?

• Ans: P (n, k) : N × N → N. Factorials are only defined for non-negative integers, and given two
non-negative integer inputs, it produces a single non-negative integer output.

3.5 Introduction to distributions

• In general, random variables map events in the sample space to real numbers.

• In assigning numerical values to objects in the sample space, can simplify the sample space substantially.

• Quick review: What is a sample space?

• We may want to know what the probability is that this variable will take on certain values, or certain
intervals of values. This is known as the variable’s distribution.

• We can consider this for discrete or continuous random variables.

• For instance, let’s consider coin tosses, where the probability of heads is 1/2. Let’s define the random
variable h as the number of heads. Now let’s consider a case where we flip five coins.

• Distribution of this random variable h can be written P (h = k) = ph(k) =
(

5
k

)
pk(1 − p)5−k for

k = 0, 1, . . . , 5.

• This is a special case of what’s known as the binomial distribution.

• Arbitrary form (note that n and p are parameters, while k is different values that can be assumed by
the random variable):
P (k;n, p) =

(
n
k

)
pk(1− p)n−k.

• Notation: We might write this h ∼ Binom(n, p)
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• This is known as the probability distribution function, and for the discrete case, it assigns a probability
to each of a finite number of realizations of the random variables. Parameters make it a “family” of
distributions.

• In class: find the probability of each realization of the variable for the five coin flip example.

• The cumulative distribution function is the probability that we achieve any value less than or equal to
a particular value. E.g. for the case defined above: F (k) =

∑k
i=0

(
5
i

)
pi(1− p)5−i where p = 1/2

• To find the probability that the random variable falls between two values, say 2 ≤ h ≤ 4 use F (4) −
F (2− 1). Need to subtract off probability one step below the bottom bound because it’s discrete.

• Find cumulative distribution of random variable h.

• Analogous case for continuous random variables, but uses integrals given that the probability of any
one value is zero.

• Instead, define probabilities over intervals, e.g. P ([a, b]) =
∫
b
af(t)dt.

• f(t) is the “density function”.

• Given this form, what would the cumulative distribution look like?

F (x) =

∫ x

−∞
f(t)dt

• Integrals of probability distributions from negative infinity to a number? What does this mean? If
there’s no support over large parts of this space, then this just adds an area of zero. See next example
of uniform distribution.

• Uniform distribution: f(x) = 1
b−a

• This is a continuous distribution where all points on the interval over which it has support are equally
likely.

• Question: Say we have uniform distribution with support of [−2, 1]. What is Pr([−0.5, 0.5])?

• What is the CDF of the uniform distribution in general terms?
Ans:

∫ x
a

1
b−adt = x−a

b−a

• Normal distribution: f(x;σ, µ) = 1
2πσ e

− (x−u)2

2σ2

• This is the standard bell curve that you are likely familiar with. It is a continuous distribution function
with support across the entire real line.

• σ parameterizes spread of distribution (it’s variance) and µ parameterizes position.

• Note: In order for something to be a valid probability distribution or density function, it needs to sum
or integrate to 1 when taken over the entire space where it has support. This, essentially, satisfies the
axiom that Pr(S) = 1.

• Mixed distributions/atoms in the distribution? In formal theory you often see this being ruled out
because it’s mathematically inconvenient.

• Note: Methods of estimation (e.g. maximum likelihood estimation, or MLE) are about being given
data, assuming a process (distribution) that underlies that data, and then trying to determine the
parameters of the distribution from that data.

• Closing thought; what does it mean to say that variables are independently and identically distributed?
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3.6 More on distributions

• What are some ways that we can connect a linear model to a distribution?

• Say we have a linear model and some cumulative distribution φ(x) (this could be the standard normal
distribution, for instance). We can wrap this distribution around the model by writing it φ(Xβ)

• Models like logit and probit allow us to do this in a way that ensures estimated ŷs are between zero
and one.

3.7 Expected Values

• In discrete space: E(x) = µ = Σkk · px(k)

• Example of single die, where we want the expected value of rolling a die.

• What about when we have unequal probabilities? Say we flip a coin and add five to the dice total if it
lands on heads?

• Practice: x ∼ Binom(4, 0.5). What is the expected value of x (i.e. E(x))?

• Analogous continuous case: E(Y ) = µ =
∫∞
−∞ y · f(y)dy

• This is a measure of central tendency.

• Practice: find expected value of x ∼ U(−1, 3).

• Practice: find expected value of x ∼ f(t) = 2t, x ∈ [0, 1]

• Rules of expectation operator:

1. E(a) = a

2. E(bX) = bE(X)

3. E(a+ bX) = a+ bE(X)

4. ΣE(g(X)) = E(Σg(x))

5. E(E(X)) = E(X)

• Conditional expectation: E(Y |X)

• Example: Dice when six has already been rolled. What is conditional expectation of the value?

• Regression function: E(y|x)

3.8 Variance and Other Moments

• mth moment of X is E(Xm). mth central moment is E(X − E(X))m

• Variance is second moment.

• Covariance: E(x− E(x))(y − E(Y ))

• Also can be expressed as E(X2)− (E(X))2. See proof below.

V ar(X) = E(X − E(X))2

= E(X2 − 2xE(X) + (E(X))2)

= E(X2)− E(2xE(x)) + (E(X))2

= E(X2)− 2E(x)E(x) + (E(X))2

= E(X2)− (E(x))2
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3.9 Rules of Variance and Covariance

• V ar(a+ bX) = b2V ar(X)

• V ar(a+ bX + cY ) = b2V ar(X) + c2V AR(Y ) + 2bcCov(X,Y )

• V ar(c) = 0

• Cov(X,Y ) = E(XY ) − E(X)E(Y ). Note, this is zero if X and Y are independent, as in this case
E(XY ) = E(X)E(Y )

• Cov(X + c, Y + b) = Cov(X,Y )

• Cov(cX, bY ) = cbCov(X,Y )

• Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

• Cov(X,X) = V ar(X)

3.10 Brief Aside: A Superficial introduction to optimization

• What happens when we want to find where a function reaches a maximum or minimum?

• Finding critical points (often maxima and minima). You covered this with Jean?

• Look at function −x2 + 4x. Derivative equals zero when tangent line is horizontal, which in this case
corresponds to the maximum.

• What about x2 − 4x?

• How do we determine if maximum or minimum? Intuition versus math. Show instances where it is
neither a minimum or maximum.

• If function is concave at critical point (i.e. f ′′(x) < 0) then we have found a maximum. If it is convex
f ′′(x) > 0 we have found minimum.

• If f ′′(x) is undefined or zero, we do not know. Thse are called saddle points.

• Now for an example.

f(x) = (x1 − c)2 + (x2 − c)2 + (x3 − c)2

= x2
1 + x2

2 + x2
3 + 3c2 − 2cx1 − 2cx2 − 2cx3

↔ df

dc
= −2x1 − 2x2 − 2x3 + 6c = 0

↔ 3c = x1 + x2 + x3

↔ c =
x1 + x2 + x3

3

• What about optimization when we have a function of many variables?

• Consider −x2 + 4x − y2 + 6x. Take partial derivatives and set each to zero. What happens if we’re
below or above the solution values?

• Consider function x2 + y2 − xy − 3y. Take partial derivatives and set each to zero. Is this a minimum
or maximum?

• Important: the optima of a function are stable to monotonic transformations of the function. Any
strictly increasing function will do: logarithmic transformations are common, for reasons we will see
later.
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3.11 Quick Introduction to Maximum Likelihood Estimation

• Up until now, we’ve been dealing with distributions where we know the value of all the parameters.

• What if we know some things about the distribution (or at minimum, suspect certain things) such
as what family of distributions it is part of, but don’t know others, such as the value of particular
parameters?

• We may, in this case, want to estimate the value of particular parameters.

• Example: Imagine being handed a coin, and not knowing whether or not it’s a fair coin. You know
that coin flips will be binomially distributed (i.e. you know the family of the distribution) and you
know how many times you’ve flipped it (n) but you don’t know p. How might you “guess” p by flipping
it a number of times and using the data you generate?

• Any function of the data whose objective is to “guess” the parameter is called an estimator, even if
this estimator ends up throwing out a lot of the data.

• Computing the value of that function given particular data gives you an estimate.

• One approach is known as maximum likelihood estimation (MLE).

• Treat each realization of the coin flip as iid. This allows us to obtain a “likelihood function”, which is
in effect, the joint probability of your “sample”.

• General form: L(θ) =
∏n
i=1 p(ki; θ), where θ is an arbitrary parameter or set of parameters.

• Intuition: we’re just multiplying all the probabilities of the individual observations. For discrete
distributions this gives you the joint probability of the sample; for continuous distributions, it gives
you the joint density.

• In either case, a sensible approach to estimation is to choose the parameter that maximizes this function,
as this is the choice that makes the sample most likely.

• Will often maximize a transformation of the function.

• In particular, recall that logarithms are monotonic functions, so taking the natural logarithm of the
likelihood function will not change the optima.

• We can try an example: flip a coin 15 times. How can we use MLE to derive an estimator for p?

Binomial Distribution with n = 15
Say we’re given n = 15, so the only unknown parameter is p. Thus we have:

=

(
15

x

)
px(1− p)15−x

Resulting in the likelihood function (where m is the number of observations)

L(p|x, n = 15) =

m∏
i=1

(
15

xi

)
pxi(1− p)15−xi

And the log-likelihood function (all Σs are Σmi=1):

logL(p|x, n = 15) = Σxilog(p) + Σ(15− xi)log(1− p) + Σlog

((
15

xi

))
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Taking the derivative and setting to zero

∂logL

∂p
=

Σxi
p

+
Σ15− xi

1− p
(−1) = 0

↔ 1− p
p

=
Σ(15− xi)

Σxi

↔ 1

p
− 1 =

Σ(15− xi)
Σxi

↔ 1

p
=

Σ(15− xi) + Σxi
Σxi

↔ p =
Σxi

Σ(15)− Σxi + Σxi

↔ p =
Σxi
m(15)

• An estimator doesn’t need to be good to be an estimator. “Seven” is an estimator. A fair bit of
statistics work is on properties of estimators as ways to evaluate them.

• A big divide in political methodology is about how willing people are to make distributional assump-
tions. Randomized experiments don’t require making distributional assumptions for results to hold,
but much of the statistical modeling work with observational data does.

• Nonparametric methods try to avoid distributional assumptions, but have less power than parametric
(distribution assuming) methods.

• Approaches coming from the causal inference literature (e.g. regression discontinuity designs, nat-
ural experiments, etc.) are often about trying to get “as if” random assignment to avoid making
distributional assumptions.

4 Linear Algebra

4.1 Vectors

4.1.1 Basics

• Scalars are single elements of some set. I.e. is a 1x1 matrix. Other representation: x ∈ R1

• Vectors, are single dimensional arrays of numbers, i.e. 1xn matrix. Other representation: x ∈ Rn

• Example x =
[
1 3 7

]
.

• These can also be interpreted as representing points in n-space. Recall that points in Rn are represented
by n-tuples, which are vectors. E.g. in R3 you have 3-tuple (0, 7, 3).

• Can identify elements of a matrix by subscripts. E.g. for above, x2 = 3

• 0 =
[
0 0 . . . 0

]
• Matrix extends vector to multiple dimensions.

• Will talk about general matrices later. For now focus on vectors.

• Vector addition just involves adding corresponding elements.

• Scalar multiplication of vectors. If a =
[
1 3 7

]
, what is ca?
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4.1.2 Dot products, lengths, distances

• Dot product of two vectors multiplies corresponding elements and sums each product, i.e. a · b =
Σai · bi

• For column vectors this is equal to a′b

• Who remembers pythagorean theorem? Can determine length of a vector in a similar fashion. Example
with 2-vector.

• Distance between two 2-vectors involves subtracting them and then applying Pythagorean theorem.

• i.e. between (1, 2) and (4, 5) we would have
√

(4− 1)2 + (5− 2)2

• Helpfully, lengths and distances generalize into n-space in a similar fashion.

• i.e. for R3 with (1, 2, 3) (2, 4, 6) we would have
√

(2− 1)2 + (4− 2)2 + (6− 3)2

• Take square root of dot product with self for length, i.e. ‖a‖ =
√
a · a

• For euclidean distance, take ‖a− b‖ =
√

(a− b) · (a− b)

4.1.3 Linear combinations, span of a set

• Linear combinations of vectors: say ca + db = e

• A linearly independent set of vectors is a set where no vector is a linear combination of another.

• Span of a set of vectors: the set of all linear combinations of a set of vectors.

• If any vectors in a set are linearly dependent, they will not increase the span of the set. Why?
Ans: Because that vector, and any scalar multiple, could already have been obtained through linear
combinations of the other vectors.

• Without getting into a formal treatment of this (598 will do that) one linearly independent vector spans
a line (easy to show), two linearly independent vectors will span a plane, three linearly independent
vectors span a three dimensional space, etc.

• Indeed, in linear algebra, we will eventually define the “dimension” of a space in terms of the vectors
required to span in. Again, this will be addressed in more detail in 598.

4.2 Matrix Algebra

4.2.1 Basics

• Matrices extend vectors to multiple dimensions.

• As with vectors, can multiply a scalar by a matrix. E.g. if A =

[
a b
d e

]
, then cA =

[
ca cb
cd ce

]
• In effect, matrix multiplication involves taking the dot products of rows of one matrix and columns of

another, and using those to generate the elements of the new matrix.

• This is why for matrices to be conformable for multiplication you need equal dimensions for columns
of one matrix and rows of the other, i.e. n ×m and m × j. This ensures that each row of the first
matrix is of equal dimensions to each column of the second matrix.

• Note that matrix multiplication is not commutative! AB 6= BA
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• Properties: (AB)C = A(BC)

• (A+B)C = AC+BC (keep order of matricies, so that pre and post multiplication works out properly)

• xAB = (xA)b = A(xB) = ABx

• Identity matrix (which is matrix with 1s along the diagonal) is such that IA = A

• Inverse matrix: AA−1 = I.

• Question: Can a non-square matrix have an inverse?

• Idempotent matrix: AA = A

• Matrix transpose: AT or A′. Switches rows and columns. A =

[
1 2
3 4

]
↔ A′ =

[
1 3
2 4

]
• Important matrix properties: (A′)′ = A

• Additive: (A+B)′ = A′ +B′

• (AB)′ = B′A′

• (cA)′ = cA′

• (A−1)′ = (A′)−1

• Matrix rank is the number of linearly independent rows or columns of matrix.

• If square matrix rank is not equal to number of rows/columns, then there will be no inverse.

4.2.2 Example of inverse, with R code

> mat2

[,1] [,2] [,3]

[1,] 1 3 3

[2,] 1 4 3

[3,] 1 3 4

> solve(mat2)

[,1] [,2] [,3]

[1,] 7 -3 -3

[2,] -1 1 0

[3,] -1 0 1

4.2.3 Determinants, inverses, etc.

• Determinants are a value that can be computed from a square matrix that is useful for finding the
inverse.

• Notably, if a square matrix is not full rank, the determinant will be zero.

• In 598 will look at how to compute determinants generally. For now, let’s look at 2x2 matrices only.

• For matrix A =

[
a b
c d

]
, we have det(A) = ad− bc

• Application of a determinant: to find the inverse of a 2x2 matrix, we do:

A−1 = 1
det(A)

[
d −b
−c a

]

14



• The weird matrix being multiplied by the inverse here is called the “adjoint” matrix. We’ll talk about
that more in 598, but for now you can just memorize this formula.

• Example: find inverse of

[
1 3
4 0

]
4.2.4 Solving Systems of Equations with Matrices (Using Inverses/Cramer’s rule)

• Matrices can often be used to represent systems of linear equations, i.e. Ax = c

• Example:

[
1 2
3 5

] [
x
y

]
=

[
x+ 2y
3x+ 5y

]
• We can use inverses to solve systems of equations: A−1Ax = x = A−1c

• For the example above, let’s choose c =

[
5
1

]
and solve using the inverse.

• Can also use something called Cramer’s rule, that uses the ratios of determinants of two matrices to
find the values for specific variables.

• Example: x =

∣∣∣∣∣∣5 2
1 5

∣∣∣∣∣∣∣∣∣∣∣∣1 2
3 5

∣∣∣∣∣∣
• Replacing column of original coefficient matrix with the values of c for the matrix in the numerator.

• This can be easier when you only care about the value of one variable.

• If you can’t compute inverse (e.g. if matrix is not of full rank), also can’t solve systems of equations.

• Also can’t compute regression estimator (full rank assumption, also known as “no perfect collinearity”
assumption)

4.3 ZOMG Regression!!!!11

• Intuition from the basics: what are we doing when we look at a single-variable regression, i.e. a model
of form y = β0 + β1x1 + e?

• Question: So if all we are interested in is the effect of x1 on y, why don’t we just do this all the time?

• Model: Drowning deaths = β0 + β1ice-cream sales + e What’s the issue?

• “Lurking” variables, or omitted variable bias. Classic case: where a dependent variable of interest is
related to some other dependent variable and the independent variable.

• Question: Suppose the true model is y = β0 +β1x1 +β2x2 +e. Say we initially estimate y = β0 +β1x1.
Will including x2 reduce the bias in our estimate of β1?

• Follow up question: what are the conditions under which the above has different answers?

• Say A causes B causes C. Should we include both A and B?

• In any event, we need a mechanism of “controlling” for omitted variables that we feel may be con-
founding our analysis.

• Multiple regression does this, in some sense. We “partial out” the effects of other independent variables
in order to isolate the effect of a single variable.
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• Note: we can obtain estimates for β1 in a two variable model in a way that illustrates the partialling
out interpretation well. Regress x1 on x2, obtain the residuals r1, then regress y on thse residuals
r1. This will give the estimate of β1 when the effects of x2 have been partialled out, and is the same
as what we would have gotten from doing multiple regression in the first place (though not the same
standard errors). See code at end of notes to try it out.

• Predicting bias direction with two variables:

Corr(x1, x2) > 0 Corr(x1, x2) < 0
β2 > 0 Positive bias Negative bias
β2 < 0 Negative bias Positive bias

• Things get more complicated when the true model includes more than two variables. For instance, say
you have x3 which is uncorrelated with x1 but is correlated with x2. Does not including x3 induce bias
in our coefficient for x1?

• Answer is yes, if x2 is correlated with x1. Doesn’t matter that x3 is not directly correlated with x1.

• Say our correct model is y = β0 + β1x1 + β2x2 + β3x3. Say we start off with just x1, and say that
we know both x2 and x3 are correlated with both x1 and y. Does our bias decrease when we go from
including only including x1 to including x1 and x2?

• The answer: not necessarily! This is the subject of Kevin Clarke’s wonderfully-titled paper: The
Phantom Menace: Omitted Variable Bias in Econometric Research.

• If x2 introduces negative bias and x3 introduces positive bias, then including only one and not the
other means you could be further from the truth than with neither.

• As a result, unless we have the fully specified model, we can’t even know if including a variable that
belongs in the model with increase or decrease the bias on the coefficient estimate of interest.

• Summary question: You are interested in the effect of x1 on y. x2 is also part of the true model.
Should you include it?

4.4 OLS estimator derivation

Ordinary least squares linear regression is based on minimizing the squared differences between your re-
gression “line” (hyperplane) and your observed data. Same deal as what we did earlier with least squares
estimators for the mean. So, want to minimize e′e where e = y−XB (can you see why this equation holds?)

minB (y −XB)′(y −XB) = (y′ −B′X ′)(y −XB)

= y′y −B′X ′y − y′XB +B′X ′XB

= y′y − 2B′X ′y +B′X ′XB

taking derivative with respect to B and setting to zero returns

−2X ′y + 2X ′XB = 0

↔ X ′XB = X ′y (Note, this is sometimes called the normal equation(s))

↔ (X ′X)−1X ′XB = (X ′X)−1X ′y

↔ B = (X ′X)−1X ′y
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